_Outline

" Some Basic Principles
" Introducing the Data (Dyad-Years)
* Common Tasks

Saving Time with Prudent b -sotg
Da.ta Management 1 — Generating Variables

— Merging Data
— Expanding Data

Brandon Bartels & — Date aed Time Fuctions '
Kevin Sweeney Introduction to Programming
— Macros

— Looping

— An Example

Program In Statistics and Methodology

" Preview of Next Time

} Introducing Our Data...

* Always Open a Log File 0 o Yearly Directed Dyads (Multiple Panel Data)
 Assert after complex :

manipulations Sld — 3 Current ID Variables

Note: Stata Commands generate y=X,or B goungy gggg ; Egggggg

Operators and Indexing generate y = X[_n], or p : Ygsp(yzar)
generate y = X[1], or — Several X Variables
generate y = X[_n-1], or « State Level « Dyad Level
generate y = x[_n+1], or ~ Military Capability — Conflict
generate y= XLN], or - Regime Type - Distance

generate y = X[_N-_n+1]

+l-l*!/
, ~=, >=, <=
&1 Il~1/\

Type: set mem 100m

Open a .log File

= e DD

. - ‘“'.l.'ul.i "l.'l

¥ Describe Data

Type: describe

erating New Variables

L ERER i

Type:

gen totalcap = cap_1+cap_2

gen maxcap = max(cap_1, cap_2)
gen capratio = maxcap/ totalcap

sum capratio
drop totalcap maxcap

s 0500 of all Data Management

& Problems are Sorting Problems

and... 100% of all sorting problems are 1D
variable problems
Type: gen dyadid = (1000*ccodel)+ccode2
sort dyadid year

listif_n<=10

Sorting Data

£ % O s

Check to see how the data is currently sorted
Type: listif _n<=10

ccodel ccode? year... won't work

§ Use by for Panel Data

TLT

To generate within-panel data, use the new ID
variable and the by command.

| Type: by dyadid: gen lag_caprat = capratio[n-1]
list dyadid year capratio lag_caprat if _n<=10

Grouping Observations

Type: egen dyadnum = group(dyadid)
list dyadid year dyadnum if _n<=25

: Merging Data

" Both data sets must contain the same ID
variables.

" Both data sets must be sorted, according to
those ID variables, in the same order.
_merge, a new variable generated during the
merge contains important information about
the merge.

Generating Descriptive Statistics

Type: by dyadid: egen capavg = mean(capratio
ist dyadid year capratio capavg

Me could mean-difference
with these...

Type: sort dyadid year

Save the data

Close this window

Reshaping, Expanding, and Date Functions

In current Data
— Type: drop if dyadid>=3000

" Reshaping moves data between “wide” and “long”
forms, and vice-versa. (e.g. panels across vs. panels
down)

- Expanding duplicates current observations

" Date Functions are a powerful tool to deal with the
time aggregation problem...
... if you have the data to do it.

obs. in master only

Type: sort dyadid year 2 == 0bs.in using only

merge dyadid year using “paste in”
tab _merge
drop _merge

1 Reshaping Data

v ‘..'-'.-ll.i "l\Jl

Close the data editor

Type: edit
We can sge this data is in “wide” form

ping Data

EREN

Close Window

Type: sort dyadid year

Type: reshape long sdate edate, i(year) j(dyadid) Then... save as ‘days_mergeda’

Reshaping Data

' ., go back to original session

Type. describe sdate edate
Notice — they are both strings

Type: sort dygdi((jj_yéear . . ; ¥ start date(sdate “dmy”)
merge dyadid year using “paste in” | - o T siale sigehayd if_n<=10
tab _merge r - yp gét‘ (ﬁﬁyeﬂ
drop _merge = I:I

January 1, 1960 ==

Date Functions, Expanding Data

: Destroylng to Create

Type: keep dyadid sdate edate start end | e Type gen today = start
drop if dyadid==dyadid[_n-1] B TR by dyadld replace today=today[_n-1]+1 if _n~=1
gen totaldays = (end-start)+1 8 T ; format today %dD_m_CY
expand totaldays s listif _n<=20
sort dyadid year

You now have 1,827 observations for each dyad, .G:en year = year(today)
and can ‘back out’ days, month, years. i ST Dot dyadid year

I'm Done
Type: Clear

g8 The Logic of Programming in
Stata: The Basics

Programming can make data management more
efficient and accurate.

Involves moving beyond canned commands in Stata
and creating a more generalized set of commands
designed for data management.

* Goal: Enter a program in Stata and get Stata to

execute it.

* Mechanics: Using the display command....
display “Hello, world”

display 450750

display “450/50”

display (46-467)*(789-99)/32

Introduction to Programming
in Stata

= OUTLINE:
| * The logic of programming in Stata

* Using saved calculated results from
& descriptive statistics commands.

" Macros

Branching and Looping

Write your own program!
" Using calculated results from estimation
commands — building blocks for next

& The Logic of Programming in
| Stata: Using .do Files

A “.do file” is simply a plain text file
containing a set of Stata commands; run
commands collectively as opposed to line-by-
line in the command window.

" Let’s execute the commands we just ran line-

by-line all at once.

B The Logic of Programming in Stata:
Opening .do Files

. .7};1 E
icl ere to
i

P The Logic of Programming in
Stata: Opening .do Files

| * Double-click on *“general”
Double-click on “PRISM Data Management”
Double-click on “basic.do”

§The Logic of Programming in Stata:

= The Logic of Programming in
@ Stata: Running .do Files
3 ways to execute a .do file:
1. “Do current file”

2. File; Do
3. Change home directory; “do basic”

== The Logic of Programming in

Stata: Running .do Files

¥ The Logic of Programming in
i Stata: Running .do Files

lick on this button to
“fo current file,” which
ill execute commands.

" Go to the I: drive again

" Double-click on “general”
Double-click on “PRISM Data Management”
Double-click on “basic.do”

10

§ The Logic of Programming in
Stata: Running .do Files

LR

P8 The Logic of Programming in

£ Stata: Running .do Files

R

¥ The Logic of Programming in
Stata: Running .do Files

Change home directory; handy if you have a
lot of .do files and you want to access them
quickly.

&8 The Logic of Programming in

y Stata: Running .do Files

TR,

11

g The Logic of Programming in
¥ Stata: Using .do Files to Run
& Commands

* Open “descriptives.do” from .do file editor.

* (o to the I: drive again
" Double-click on “general”
Double-click on “PRISM Data Management”
Double-click on “descriptives.do”

The Logic of Programming in
® Stata: Using .do Files to Run
= Commands

Use .do files to archive and run multiple
descriptive and estimation commands.

First, open data. “File, Open”
" Go to the I: drive again
* Double-click on *“general”

Double-click on “PRISM Data Management”

Double-click on “Brandon.dta”

g The Logic of Programming in

{ Stata; Using .do Files to Run

12

g The Logic of Programming in
! Stata: Using .do Files to Run

g The Logic of Programming in
$8 Stata: Writing and Executing a

y The Logic of Programming in
? Stata: Writing and Executing a

I:)%)rger:aag(])gram in a .do file to execute commands;

comes in handy for more complex data management
tasks, especially ones for which there are many
variables that need transforming and/or generating.

Basics of programming: Let’s program “Hello,
world”

* Open “hello.do” from the .do file editor.
" Go to the I: drive again

" Double-click on “general”
Double-click on “PRISM Data Management”
Double-click on “hello.do”

g The Logic of Programming in
§ Stata: Writing and Executing a

13

g The Logic of Programming in
& Stata: Writing and Executing a

Using Saved Calculated Results

* For both descriptive and estimation
commands, Stata saves calculations such as
the mean, sd, min, max, coefficients, se’s, etc.

* Use return list after a descriptive command
(such as summary or tab) to list all saved
results.

su distance

return list

@ | Using Saved Calculated Results

* Use these saved calculated results for quick
variable generation.

* For instance, generating mean-centered
variables. ..

14

f Macros

" Macros in Stata are VERY powerful and
crucial for advanced programming.

They allow one to condense a group of
variables or a complicated numeric or string
expression into a shorthand macro name.
" Basic syntax:
— local macroname expression
* To recall macro, use: "macroname’

— Note: left quote is above the tab key, right quote
is the normal single quote.

" Examples....

15

Macro name Elements in the macro

$ 8 Macros

“ Use macros to save descriptive stats from
“summarize”.

su distance

16

Macros

¥ Macros

" Other examples:
local a 5.67
local b 96.34
local ¢ 6.65
di‘a™b’- ¢/

local if if year>1816 & year<1820

17

Macros

Macros are very useful for writing generalizable

programs. Stata has some nice built-in features.

" For instance, when running a program in Stata,
words included in the command after the program
name are understood to be macros, named “1”, 27,
etc.

" For instance, in our “Hello, world” program.

hello distance

" Stata would assume that in the program, distance is

a macro named “1”. So anything in this program

that referred to “1" would now be distance.

" Subsequent variables after distance would be macros
wgn w3 ot

>

Do current file

8 Macros

- Example: Open “mysummary.do” from the
.do file editor.
" Go to the I: drive again
" Double-click on “general”
Double-click on “PRISM Data Management”
Double-click on “mysummary.do”

18

" The macro “0” indicates all of the variables
included after program.

* Open “mysummary2.do” from the .do file
editor.

" Go to the I: drive again

" Double-click on “general”
Double-click on “PRISM Data Management”
Double-click on “mysummary2.do”

& Macros

19

Macros

Branching and Looping

" “Real programs branch and loop.
" Branching: if and else.
" Looping: foreach, forvalues, and while.
" Basic syntax for foreach:

foreach macroname [in | of listtype] list {

commands

}
" Basic syntax for forvalues:

forvalues macroname = range {

commands

}

1 Branching and Looping

" Open “ten.do” from the .do file editor.
* (o to the I: drive again

* Double-click on “general”
Double-click on “PRISM Data Management”
Double-click on “ten.do”

20

Branching and Looping

T .
ProgTam tan
forvalums 1 = 1 a
display = 4w
Iglick on button to execute.

1 Iy

" Use foreach to issue command on multiple variables
at a time.

* “Demean” example: Powerful program for mean-
centering variables; efficient and foolproof.

* Open “demean.do” from the .do file editor.
" Goto the I: drive again
" Double-click on “general”

Double-click on “PRISM Data Management”
Double-click on “demean.do”

& Branching and Looping

Wi

=

21

y Branching and Looping

“ * Housekeeping detour:
drop distance_cen

¥ You Can Write Your Program!

* Use returned calculated results, macros,
branching and looping to write you own
program to make your own data management
more efficient and powerful.

22

= Returning Calculated Results from
| Statistical Models: Prelude....

* Just like Stata saves calculated results from
descriptive commands, it also does so with
estimation commands.

~ We'll incorporate this into the May 7t
session, “Advanced Programming in Stata.”
— Programming your own estimators.
e OLS, MLE, split population duration model.
— Post-estimation simulation.

23

