
1

Brandon Bartels &
Kevin Sweeney
Program In Statistics and Methodology

Saving Time with Prudent
Data Management

Outline
♦ Some Basic Principles
♦ Introducing the Data (Dyad-Years)
♦ Common Tasks

– Sorting
– Generating Variables
– Merging Data
– Expanding Data
– Date and Time Fuctions

♦ Introduction to Programming
– Macros
– Looping
– An Example

♦ Preview of Next Time

Basic Principles
To Save Time

♦ Always Open a Log File
♦♦ AssertAssert after complex

manipulations
Note: Stata CommandsCommands

♦ Operators and Indexing

+, +, -- , * , /, * , /
==, ~=, >=, <===, ~=, >=, <=
&, |, ~, ^&, |, ~, ^

generate y = xgenerate y = x, or
generate y = x[_n]generate y = x[_n] , or
generate y = x[1]generate y = x[1], or
generate y = x[_ngenerate y = x[_n--1]1], or
generate y = x[_n+1]generate y = x[_n+1] , or
generate y = x[_N]generate y = x[_N], or
generate y = x[_Ngenerate y = x[_N--_n+1]_n+1]

Introducing Our Data…

♦ Yearly Directed Dyads (Multiple Panel Data)
– 3 Current ID Variables

• Country Code 1 (ccode1)
• Country Code 2 (ccode2)
• Year (year)

– Several X Variables
• State Level

– Military Capability
– Regime Type

• Dyad Level
– Conflict
– Distance

2

Open Stata, Increase Memory

Type: set set mem mem 100m100m

Open the Data

Open a .log File Describe Data

Type: describedescribe

3

Generating New Variables

Type:
gen gen totalcap totalcap = cap_1+cap_2= cap_1+cap_2
gen gen maxcap maxcap = max(cap_1, cap_2)= max(cap_1, cap_2)
gen gen capratio capratio = = maxcapmaxcap//totalcaptotalcap
sum sum capratiocapratio
drop drop totalcap maxcaptotalcap maxcap

Sorting Data

Check to see how the data is currently sorted
Type: list if _n<=10list if _n<=10

ccode1 ccode2 year… won’t work

95% of all Data Management
Problems are Sorting Problems

and… 100% of all sorting problems are ID
variable problems
Type: gen gen dyadid dyadid = (1000*ccode1)+ccode2= (1000*ccode1)+ccode2

sort sort dyadid dyadid yearyear
list if _n<=10list if _n<=10

Use byby for Panel Data

To generate within-panel data, use the new ID
variable and the byby command.

Type: by by dyadiddyadid: gen lag_: gen lag_caprat caprat = = capratiocapratio [_n[_n --1]1]
list list dyadid dyadid year year capratio capratio lag_lag_caprat caprat if _n<=10if _n<=10

4

egenegen: eextensions to gengenerate

Grouping Observations

Type: egen dyadnum egen dyadnum = group(= group(dyadiddyadid))
list list dyadid dyadid year year dyadnum dyadnum if _n<=25if _n<=25

egenegen: eextensions to gengenerate

Generating Descriptive Statistics

Type: by by dyadiddyadid: : egen capavg egen capavg = mean(= mean(capratiocapratio))
list list dyadid dyadid year year capratio capavgcapratio capavg

We could mean-difference
with these…

Merging Data

♦ Both data sets must contain the same ID
variables.

♦ Both data sets must be sorted, according to
those ID variables, in the same order.

♦ _merge, a new variable generated during the
merge contains important information about
the merge.

Merging Data: Example 1
open a new Stata Session

5

Sort & Save Dyadic Alliance Data

Type: sort sort dyadid dyadid yearyear

Save the data

Close this window

Merging in the Alliance Data
go back to your original window

Type: sort sort dyadid dyadid yearyear
merge merge dyadid dyadid year usingyear using ““paste in” ”
tab _merge tab _merge
drop _merge drop _merge

3 == all obs. match
1 == obs. in master only
2 == obs. in using only

Reshaping, Expanding, and Date Functions
♦ In current Data

– Type: drop if drop if dyadiddyadid>=3000>=3000

♦ Reshaping moves data between “wide” and “long”
forms, and vice-versa. (e.g. panels across vs. panels
down)

♦ Expanding duplicates current observations

♦ Date Functions are a powerful tool to deal with the
time aggregation problem…
… if you have the data to do it.

Reshaping Data
Open a new Stata window

6

Reshaping Data

Type: edit edit

Reshaping Data

We can see this data is in “wide” form

Close the data editor

Reshaping Data

Type: reshape long reshape long sdate edatesdate edate, i(year) j(, i(year) j(dyadiddyadid))

Reshaping Data

Type: sort sort dyadid dyadid yearyear
Then… save as ‘days_merge.dta’

Close Window

7

Reshaping Data
go back to original session

Type: sort sort dyadid dyadid yearyear
mergemerge dyadiddyadid year using year using “paste in”
tab _merge tab _merge
drop _merge drop _merge

Date Functions

Type: describe describe sdate edatesdate edate
Notice – they are both strings
Type: gen start = date(gen start = date(sdatesdate, “, “dmydmy”)”)

gen end = date(gen end = date(edateedate, “, “dmydmy”) ”) Type: list list dyadid sdate edate dyadid sdate edate start end if _n<=10 start end if _n<=10

January 1, 1960 == 0

Date Functions, Expanding Data
Destroying to Create

Type: keep keep dyadid sdate edate dyadid sdate edate start end start end
drop if drop if dyadiddyadid====dyadiddyadid[_n[_n--1] 1]
gen gen totaldays totaldays = (end= (end--start)+1start)+1
expand expand totaldays totaldays
sort sort dyadid dyadid year year

You now have 1,827 observations for each dyad,
and can ‘back out’ days, month, years.

Date Functions, Expanding Data
Destroying to Create

Type: gen today = start gen today = start
by by dyadiddyadid: replace today=today[_n: replace today=today[_n--1]+1 if _n~=11]+1 if _n~=1

format today %format today %dDdD_m_CY _m_CY
list if _n<=20list if _n<=20

Gen year = year(today)Gen year = year(today)
Sort Sort dyadid dyadid yearyear

8

Recovering Your Xs

Type: merge merge dyadid dyadid year using “…” year using “…”
tab _merge tab _merge
drop _merge drop _merge

list list dyadid dyadid year today year today capratio capratio if _n<=20 if _n<=20
list …if _n>=365 list …if _n>=365 & & _n<=368 _n<=368 I’m Done
Type: Clear Clear

Introduction to Programming
in Stata
OUTLINE:
♦The logic of programming in Stata
♦Using saved calculated results from
descriptive statistics commands.
♦Macros
♦Branching and Looping
♦Write your own program!
♦Using calculated results from estimation
commands – building blocks for next
PRISM session (Friday, May 7).

The Logic of Programming in
Stata: The Basics

♦ Programming can make data management more
efficient and accurate.

♦ Involves moving beyond canned commands in Stata
and creating a more generalized set of commands
designed for data management.

♦ Goal: Enter a program in Stata and get Stata to
execute it.

♦ Mechanics: Using the displaydisplay command….
display “Hello, world”display “Hello, world”
display 450/50display 450/50
display “450/50”display “450/50”
display (46display (46--467)*(789467)*(789--99)/3299)/32

The Logic of Programming in
Stata: Using .do Files

♦ A “.do file” is simply a plain text file
containing a set of Stata commands; run
commands collectively as opposed to line-by-
line in the command window.

♦ Let’s execute the commands we just ran line-
by-line all at once.

9

The Logic of Programming in Stata:
Opening .do Files

Click here to
open new .do
file.

The Logic of Programming in Stata:
Opening .do Files

The Logic of Programming in
Stata: Opening .do Files

♦ Double-click on “general”
Double-click on “PRISM Data Management”

Double-click on “basic.do”

The Logic of Programming in
Stata: Opening .do Files

10

The Logic of Programming in
Stata: Running .do Files
♦ 3 ways to execute a .do file:

1. “Do current file”
2. File; Do
3. Change home directory; “do basic”

The Logic of Programming in
Stata: Running .do Files

Click on this button to
“do current file,” which
will execute commands.

The Logic of Programming in
Stata: Running .do Files

The Logic of Programming in
Stata: Running .do Files
♦ “File; Do”
♦ Go to the I: drive again
♦ Double-click on “general”

Double-click on “PRISM Data Management”
Double-click on “basic.do”

11

The Logic of Programming in
Stata: Running .do Files

The Logic of Programming in
Stata: Running .do Files

♦ Change home directory; handy if you have a
lot of .do files and you want to access them
quickly.

The Logic of Programming in
Stata: Running .do Files

cd changes home directory

The Logic of Programming in
Stata: Running .do Files

12

The Logic of Programming in
Stata: Running .do Files

The Logic of Programming in
Stata: Using .do Files to Run
Commands

♦ Use .do files to archive and run multiple
descriptive and estimation commands.

♦ First, open data. “File, Open”
♦ Go to the I: drive again
♦ Double-click on “general”

Double-click on “PRISM Data Management”
Double-click on “Brandon.dta”

The Logic of Programming in
Stata: Using .do Files to Run
Commands
♦ Open “descriptives.do” from .do file editor.
♦ Go to the I: drive again
♦ Double-click on “general”

Double-click on “PRISM Data Management”
Double-click on “descriptives.do”

The Logic of Programming in
Stata: Using .do Files to Run
Commands

Click on button to execute.

13

The Logic of Programming in
Stata: Using .do Files to Run
Commands

The Logic of Programming in
Stata: Writing and Executing a
Program
♦ Write a program in a .do file to execute commands;

comes in handy for more complex data management
tasks, especially ones for which there are many
variables that need transforming and/or generating.

♦ Basics of programming: Let’s program “Hello,
world”

♦ Open “hello.do” from the .do file editor.
♦ Go to the I: drive again
♦ Double-click on “general”

Double-click on “PRISM Data Management”
Double-click on “hello.do”

The Logic of Programming in
Stata: Writing and Executing a
Program

Click on button to execute.

The Logic of Programming in
Stata: Writing and Executing a
Program

14

The Logic of Programming in
Stata: Writing and Executing a
Program

Using Saved Calculated Results

♦ For both descriptive and estimation
commands, Stata saves calculations such as
the mean, sd, min, max, coefficients, se’s, etc.

♦ Use return listreturn list after a descriptive command
(such as summarysummary or tabtab) to list all saved
results.

su distancesu distance
return listreturn list

Using Saved Calculated Results Using Saved Calculated Results

♦ Use these saved calculated results for quick
variable generation.

♦ For instance, generating mean-centered
variables…

15

Using Saved Calculated Results Using Saved Calculated Results

Using Saved Calculated Results Macros
♦ Macros in Stata are VERY powerful and

crucial for advanced programming.
♦ They allow one to condense a group of

variables or a complicated numeric or string
expression into a shorthand macro name.

♦ Basic syntax:
– local macroname expression

♦ To recall macro, use: `macroname’
– Note: left quote is above the tab key, right quote

is the normal single quote.
♦ Examples….

16

Macros

Macro name Elements in the macro

Macros

This will summarize every variable
in the macro called “list”.

Macros Macros

♦ Use macros to save descriptive stats from
“summarize”.
su su distancedistance

17

Macros Macros

Macros

♦ Other examples:
local a 5.67
local b 96.34
local c 6.65
di `a’*`b’ - `c’/`a’

local if if year>1816 & year<1820

Macros

18

Macros
♦ Macros are very useful for writing generalizable

programs. Stata has some nice built-in features.
♦ For instance, when running a program in Stata,

words included in the command after the program
name are understood to be macros, named “1”, “2”,
etc.

♦ For instance, in our “Hello, world” program.
hello distance

♦ Stata would assume that in the program, distance is
a macro named “1”. So anything in this program
that referred to `1’ would now be distance.

♦ Subsequent variables after distance would be macros
“2”, “3”, etc.

Macros

♦ Example: Open “mysummary.do” from the
.do file editor.

♦ Go to the I: drive again
♦ Double-click on “general”

Double-click on “PRISM Data Management”
Double-click on “mysummary.do”

Macros

Do current file

Macros

Calls up program.

In the program, “distance” is the
macro “1”.

19

Macros Macros

Same thing as entering su distance, detail

Macros

♦ The macro “0” indicates all of the variables
included after program.

♦ Open “mysummary2.do” from the .do file
editor.

♦ Go to the I: drive again
♦ Double-click on “general”

Double-click on “PRISM Data Management”
Double-click on “mysummary2.do”

Macros

Click on button to execute.

20

Macros Macros

Branching and Looping
♦ “Real programs branch and loop.”
♦ Branching: ifif and elseelse.
♦ Looping: foreachforeach, forvaluesforvalues, and whilewhile.
♦ Basic syntax for foreachforeach :

foreach macroname [in | of listtype] list {
commands

}
♦ Basic syntax for forvaluesforvalues:

forvalues macroname = range {
commands

}

Branching and Looping

♦ Open “ten.do” from the .do file editor.
♦ Go to the I: drive again
♦ Double-click on “general”

Double-click on “PRISM Data Management”
Double-click on “ten.do”

21

Branching and Looping

Click on button to execute.

Branching and Looping

Branching and Looping

♦ Use foreachforeach to issue command on multiple variables
at a time.

♦ “Demean” example: Powerful program for mean-
centering variables; efficient and foolproof.

♦ Open “demean.do” from the .do file editor.
♦ Go to the I: drive again
♦ Double-click on “general”

Double-click on “PRISM Data Management”
Double-click on “demean.do”

Branching and Looping

Click on button to execute.

22

Branching and Looping

♦ Housekeeping detour:
drop distance_drop distance_cencen

Branching and Looping

Branching and Looping

Creates
five mean-
centered
variables.

You Can Write Your Program!

♦ Use returned calculated results, macros,
branching and looping to write you own
program to make your own data management
more efficient and powerful.

23

Returning Calculated Results from
Statistical Models: Prelude….

♦ Just like Stata saves calculated results from
descriptive commands, it also does so with
estimation commands.

♦ We’ll incorporate this into the May 7th

session, “Advanced Programming in Stata.”
– Programming your own estimators.

• OLS, MLE, split population duration model.
– Post-estimation simulation.

